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Abstract

The P cell pathway in primates is involved in both lumi-
nance and chromatic perception. This correlates well with
P cell receptive fields, which are both spatially and chro-
matically opponent. Since, however, the luminance and
chromatic channels found in psychophysics are indepen-
dent, the mixed luminance and chromatic information in P
cell signals must be demultiplexed in cortex.

We have examined the ability of an unsupervised
neural network to demultiplex P cell signals, using real-
istic visual inputs. Digitised images, corrected to be
statistically similar to retinal images, were sampled by a
simulated retinal mosaic, and filtered by difference-of-
gaussians P cell receptive fields. The simulated P cell
signals were used as inputs to a network designed to
maximise unit responses while minimising the correlation
between units. After a period of training, we evaluated
the receptive fields formed in the network. The neurons
clearly fell into two categories. The first were those
sensitive to changes in intensity in the retinal image; that
is, luminance selective units. The second were those
sensitive to a colour difference in the retinal image; that
is, chromatically selective units.

1. Introduction

Light that falls on the retina is absorbed by a mosaic of
photoreceptors. These are of three types (called L, M and S
cones), sensitive to different regions of the spectrum. Our
colour sensations do not depend directly on the cone re-
sponses; instead, they result from combinations of cone
responses. The simplest and most widely accepted model
says that human colour vision is mediated by three chan-
nels: a “luminance” channel, which is a sum of L and M
cone responses; a “red/green” channel, which is a differ-
ence of L and M cone responses; and a “blue/yellow”
channel, which compares the response of S cones with that
of L and M cones1,2 (Fig. 1a). The luminance channel is
spatially bandpass, preferring medium spatial frequencies
(2-5 cycles per degree). The colour channels are spatially
low pass.3

These separate channels are not present in the retina or
lateral geniculate nucleus (lgn). In the retina there are two
distinct classes of ganglion cell: those with small cell
bodies, which feed to the P layers of the lgn (and which we
will call retinal P cells), and those with large cell bodies
which feed to the M layers of the lgn (which we will call
retinal M cells). Both classes of ganglion cell typically have
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Figure 1. The colour and luminance channels from the point of view of (a) psychophysics (b) physiology.
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an antagonistic centre/surround receptive field. Near fovea,
the centre of a retinal P cell receptive field is so small that
only one cone can be contained inside it; the surround,
however, can contain many cones. Opponency between the
centre cone (either L, M or S) and the cones in the surround
(a more varied sample of cone types), yields a degree of
colour opponency reminiscent of the red/green or blue/
yellow channels.4 However, the spatial opponency of the
receptive field means that a retinal P cell is still responsive
to changes in luminance. The centres of M cell receptive
fields are large enough to contain many cones, so the degree
of colour opponency in these cells is much less than in the
P cells. The retinal P and M cells feed to the P and M layers
of the lgn, where the receptive fields are essentially un-
changed.5 The P and M layers of the lgn then feed to
different layers of the visual cortex (Fig. 1b). At this stage,
presumably, the psychophysical channels come into exist-
ence; there have been reports of cortical cells which could
be substrates of these channels.6

One important component of the schema in Fig. 1b is
the separation of the P cell pathway into separate luminance
and chromatic channels in cortex. (This organisation has
been confirmed by lesion studies of the lgn.7) Somehow, the
cortical cells must separate out the combination of lumi-
nance and colour information that exists in the P cell signals
to produce the two channels. If the P cells were marked
anatomically according to the kind of cone at their centre
(by, for example, a characteristic membrane protein), this
separation could be “hard-wired” in the cortex, and imple-
ment a simple demultiplexing scheme.8 There is, however,
reason to suspect that the P cells cannot be marked this way,
because the P cells themselves cannot distinguish between
the different cone types. In this case, separation of P cell
signals into luminance and chromatic channels must occur
by some kind of adaptive process.

In this paper, we will explore the possibility that the
luminance and colour pathways in cortex that arise from the
P cell pathway are a result of a learning process. The outline
of the paper is as follows. First we will analyse the local
statistical structure of real images, using principal compo-
nents methods. We find that for colour images, the local
principal components correspond well to what we would
call luminance and chromatic channels. Next, we develop a
simple, biologically plausible, neural network which ap-
proximates the extraction of principal components from its
inputs. When this network is run using real images as inputs,
the units in the network develop receptive fields which
correspond to a selection of colour and luminance principal
components. The receptive fields are similar to those found
in area V1 of primate cortex.

2. Principal Components

2.1 Definition
Principal components analysis represents a data vector

z (a random variable) as a sum of vectors which are in some
sense typical of the distribution of z. There are a number of
derivations of principal components. Here, we will define
the first principal component of z as the unit vector π which
minimises

     
    

z − π z' . π( ) 2
(1)

where <.> is the expected value over the ensemble of
possible data vectors, and z’ is the transpose of z. In this
definition, the principal component zπ is the pattern which,
when scaled by z’π, most closely matches the data vector z.
Expanding yields

    

z − π z' . π( ) 2
= z' −π ' z' . π( )( ). z − π z' . π( )( )

= z' .z − 2 z' . π( )2 + π ' . π z' . π( )2

= z' .z − z' . π( )2 since π ' . π = 1

= z' .z − π ' z.z' π

which is minimised when π is the eigenvector of <z z’> with
largest eigenvalue. The second principal component of z is
the principal component of the residual z - π.(z’ π); and so
on for the third, fourth, fifth principal components. Each
successive principal component accounts for less and less
of the variation in z. If we write the i-th principal component
as πi, the data vector z can be expanded as a weighted sum
of these components:

      
z = π i (z' π i )

i
∑ (2)

The number of principal components in the summation
is the same as the rank of <z z’>, but if the summation is
reduced to include only the first k principal components say,
with k < rank(<z z’>), then the equation holds true in a least-
squares sense, because each principal component is or-
thogonal to the others.

2.2 Local Principal Components
In image analysis, z is a vector of pixel values: zx is

taken to be the pixel value at position x. The definition (1)
above will yield the global principal components of an
ensemble of images, of which z is one example; but the
global principal components are a cumbersome way of
describing the image, and like global Fourier analysis lack
information about local features. A better approach is to
look at local or windowed principal components (in an
analogy to the Gabor filter). Choose a window function, and
represent it by an image vector w where wx is the value of
the window at position x. Letting W = diag(w), the win-
dowed image is then Wz. To cover the image with these
local principal components, we need a series of windows
Wk such that ∑Wk = 1. Since natural images are statistically
translation invariant, we should select each Wk to be a
translation of a standard window (e.g. a gaussian). Then the
local principal components within each window Wk are just
translations of the local principal components under the
standard window.

There are a few possible definitions of local principal
components (LPC). We shall define a local principal com-
ponent, using window W, as the unit vector π that minimises

       
    

Wz − π z' Wπ( ) 2
(3)

Since this merely substitutes Wz for z in (1), the
principal component π is the eigenvector of W<z z’>W with
largest eigenvalue. Note that if we want to identify the local
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principal components with a neural receptive field or with
a filter kernel, the receptive field weights are Wπ not just π,
since it is the former that is applied to the image data z.

The data vector z can be expanded into a weighted sum
of local principal components, in much the same way as it
can be expanded into a sum of global principal components
in equation (2). If πk

1, πk
2, πk

3, ... πk
n are the successive local

principal components of the weighted image Wkz, then the
original image z can be expanded as

   
      
z = Wkz = πk

i

k,i
∑ (z' Wkπk

i )
k
∑

Unlike global principal components, however, if each
windowed image Wkz is not completely expanded into it’s
components, the equation does not hold in a least-squares
sense, because the principal components of adjacent win-
dows are not orthogonal.

The major problem with LPC is its efficiency in repre-
senting an image. The sampling rate of each of the local
principal components is tied to the sampling rate of the
window function Wk: that is, the number of copies of W
needed to cover the image z. Conceivably, some of the local
principal components could be sampled at a lower rate than
this, whereas others may represent some image characteris-
tics that are better sampled at a higher rate. It would be
interesting to develop a theory which combines the optimality
properties of principal components and the sampling flex-
ibility of multi-rate or pyramid representations of an im-
age,9 though this is outside the scope of the present work.

3. Colour Principal Components

3.1 Multisensor Images
A colour (or multisensor) image is a set of images

formed by integrating the incident light over a series of
spectral sensitivity curves. An example is the multi-image
produced by an RGB digitizer. A multi-image can be
represented by a set of image data vectors {z1, z2, ... zr}. A
multi-image can be analysed for local principal components
in exactly the same way as a single image, by analysing the
vector formed by concatenating the multi-image compo-
nents i.e. by analysing the principal components of the
vector z = (z1’, z2’, ... zr’)’. The windowing function is also
repeated as often as necessary to cover all image compo-
nents; that is W = diag(w,w,w,... w).

A more revealing approach is to decorrelate the images
on a pixel-by-pixel basis,10 before computing the local
principal components. The pixel values of all the images at
point x form a vector (zx

1. zx
2, ... zx

r) = px say. We can
compute the principal components of px over all positions x.
These are the eigenvectors of the matrix Mij = < px

i.px
i >,

where the expectation is over all positions x. Let bq be the
q-th such eigenvector. Then we can form the image

  dq = ∑bqizi, where bqi is the i-th element of bq.

The set {d1, d2, ... dr} is another multi-image, but one
with zero pixel-wise correlation. If the cross-correlation
between two images in the original set <zx

i.zw
i> is factorable

into a spatial covariance cx,w (common to all images) and a
sensor covariance cij (unique to the particular pair i, j of

images) i.e. <zx
i.zw

j> = cx,w.ci,j, the new multi-image consists
of a set of completely independent images, which may be
analysed for their spatial principal components separately.

An example of this kind of analysis is shown in Figure
2. We analysed the red and green channels of a digitised
RGB image. For simplicity, we did not perform a full 2D
analysis, but instead a 1D analysis of the scanlines of the
image. The image was first high-pass filtered to set the
mean pixel value to zero (a useful step in principal compo-
nents analysis), by subtracting a gaussian-blurred image
(using a blur a of 4 pixels) from the original image. We built
up a small (16 by 16) cross-correlation matrix by sampling
16 pixel segments from randomly selected rows. The cross-
correlation matrix (or covariance matrix) of the red and
green channels is shown in Fig 2a. After pixel-wise
decorrelation, the cross-correlation matrix looked like Fig.
2b. The original channels were almost, but not quite, factor-
able into a sum and a difference component. A local princi-
pal components analysis was performed on the pixel
decorrelated multi-image, using a gaussian window with σ
= 4 pixels. The first five components Wπ1, Wπ2 ... Wπ5 are
shown in Figure 2c.

3.2 Retinal Images
The multi-image of interest in this paper is one pro-

duced by integrating the incident light with the sensitivity
curves of the human L, M and S cone photoreceptors. We
shall use the notation {zL,zM,zS} to indicate the L, M, and S
cone images: zL

x being the quantal catch of an L cone
situated at point x, etc. Each image is also scaled to have a
mean of 1 (von Kries adaptation). The retinal image differs
from {zL,zM,zS} in that only one cone is present at each
retinal position. If we let Lx, Mx, and Sx be the characteristic
functions of each cone distribution in the retina (i.e. Lx =1
if point x contains an L cone, 0 otherwise) then the retinal
image r is

   rx = LxzL
x + MxzM

x + SxzS
x

One can, as before, compute the local principal compo-
nents of r, but their functional interpretation is different
from a single-spectrum image. In the retinal image r, colour
information is encoded as a variation in cone response with
position, since it is position that determines the cone type.
For example, a red colour will cause L cones to respond
slightly more than M cones, and so cause a spatial “ripple”
in the retinal image r with the same pattern as Lx - Mx. The
colour ripple has a high spatial frequency, and so it is
enhanced by high-pass filtering. This presumably is why
the retinal P cells have such small receptive fields.

The other critical difference between the principal
components of an ordinary image and the those of die retinal
image is that the latter are not translation invariant, because
the distribution of cones in the retina is not translation
invariant. Thus, the principal components of a retinal image
cannot be interpreted as convolutional filter kernels, though
they may still be interpreted as neural receptive fields.
Principal components from a simulated retina are shown in
Figure 3. Only zL and zM were used to build the retinal
image. We approximated zL, zM by a linear combination of
the red and green channels of the image used in Figure 2.
The linear combination was selected to increase the pixel-
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Figure 2. (a) Spatial Covariance matrix of the red and green
channels of a natural image. (b) Covariance matrix of the same
image after decorrelating into two channels, red+green and red-
green. (c) Local Principal components from the covariance ma-
trix b. Solid line indicates the component due to red+green;
dashed lines are the component part from red-green channel.
Numbers in upper left corner give the percentage of variance
accounted for by the component.

(a)

(b)

(c)
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wise correlation of zL and zM to 98%.11 Because natural
images are almost factorable, and because natural
reflectances can be approximated by a 3 element basis set12

so that—with a fixed illuminant—any two trichromatic
spaces can be linked by a linear transform, we believe that
the fake {zL, zM} is statistically very similar to the real thing.

Each of zL and zM was sampled by a 16-pixel “retina”
of randomly selected L and M cones, with on average 2 L
cones for each M. The retinal image was then filtered with
a difference-of-gaussians receptive field simulating a reti-
nal P cell. Various sizes of the centre were used, from σ =
0.5 pixels to 1.5 pixels. The surround σ was always 1.6
times larger. Below is an example of the retinal local
principal components (using the same windowing function
as in Figure 2) for σ = 0.7 pixels. The first principal
component is a colour component, differencing the L and M
cone responses. It is the dominant component for σ up to 1.2
pixels, but disappears when σ = 1.5 pixels. Note also that the
other principal components in Figure 3 represent fine de-
tailed luminance variation; Thus, if the schema shown in
Figure lb is correct, the P cell pathway must extract more
than just the first principal component of its retinal signal.

4. Neural Nets

4.1 Neural Net Algorithm
There is a strong connection between principal compo-

nents analysis and Hebbian learning in neural networks. A
model neuron generally accepts an input vector z, which is
weighted by a vector of synaptic strengths s to produce a
neural response n = w.z. A Hebbian neuron changes the
weight vector s after each input by an amount ∆s propor-
tional to nz. Provided s is normalised, it will tend towards
the first principal component of the ensemble of inputs z.13

The basic Hebbian rule can be extended to extract all
principal components of an input, using a number of neurons
interconnected in various clever ways.14,15,16 While all these
algorithms are effective in extracting principal components, all
of them have one or more unbiological features. Either the
wiring scheme required is not known to exist, or too many
inhibitory interneurons are needed (only about 10% of visual
cortical neurons are inhibitory), or the number of interconnec-
tions in the network rises as the square of the number of
neurons, which could overwhelm the brain if the network is
reasonably large. In the remainder of this section, we shall
motivate a more biologically plausible network algorithm
which is able to extract multiple principal components.

Consider a collection of neurons, labelled i = 1...m.
Each neuron accepts an input vector z which it weights by
a synaptic weight vector si (such that | | si | | = 1). Each neuron
is inhibited by a feedback term fi which comes from the
other neurons in the network (the exact form of fi will be
specified later, but it is a weighted average of the responses
of neurons). The response of the i-th neuron ni is given by

ni = h(si.z - fi)

where h(.) is a half-wave rectification: h(x) = 0 if x < 0,
otherwise h(x) = x. This is a simple integrate-and-fire
neuron, which only fires when there is an excess of excita-
tion over inhibition. We want the network responses {n1, n2,
... nm} to encode the inputs z as efficiently as possible. To
maximise the information transfer, we would like to
maximise ∑ni

2. To minimise the redundancy of the encod-
ing, we would like to minimise ∑nifi, since fi is a measure of
the response of other neurons in the network. To optimise
both simultaneously, we can maximise

    
P = ni

2 − β ni f i
i

∑
i

∑

Figure 3. The first three principal components of the retinal image
after P cell filtering. The x axis gives retinal position, the y axis
gives the value of the component at that position. Dots indicate
positions occupied by an L cone, triangles indicate positions
occupied by an M cone. Lines have been added to indicate the
form of the principal component (chromatic or luminance). The
figures in the upper right corners give the percentage of variance
accounted for by each component.
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where β is a constant. We can do this by choosing an update
rule where the increment ∆sk is proportional to ∂P/∂sk.
Following some simple algebra, we have

      

∂P
∂sk

= (2nk − βf k )h' (skz − f k )z − 2 + β( )ni − βf i( ) ∂f i

∂ski
∑

where the derivative of the rectifier h’(.) is h’(x) = 0 if x ≤
0, otherwise h’(x) = 1. Assuming that ∂fi/∂sk is negligible,
the update rule is

     ∆sk = λ(nk - (β/2)fk)z if nk > 0, otherwise ∆sk = 0.

where λ is the learning rate. The weight vectors sk must be
renormalised after every update. The rule works by compar-
ing the neuron response nk with the feedback term fk, which
quantifies the response of the rest of the network. When the
response nk exceeds the term (β/2)fk, the weight vector sk is
reinforced moved closer to z. When it does not, the weight
vector is moved away from z. Thus each neuron in effect
competes with the rest of the network. Standard Hebbian
learning only uses the first term in the update rule, nkz. The
rule proposed above, since it allows for both reinforcement
and attenuation of the weight vector, is a form of Hebb-
Stent rule.

The rule was tested on a global principal components
task. In this task, the feedback term fk was simply the mean
response of all neurons in the network, multiplied by a
factor which was the regression of nk on fk. This can be
implemented by adding a single inhibitory interneuron to
the network, which sums the neural responses and feeds
back on each neuron through a modifiable inhibitory syn-
apse. The synaptic weight of this inhibitory synapse is the
regression coefficient <nkfk>/<fk

2>. With a value of β = 2,
this network succeeded in finding all the principal compo-
nents of the input vector, even when the variance ratio of
highest to lowest component was 256:1. Clearly the algo-
rithm, despite the approximations used to derive it, is
effective in finding principal components, provided the
value of fk is selected appropriately.

4.2 Neural Nets and Local Principal Components
The aim of this study is to see if a simple unsupervised

learning algorithm can demultiplex the luminance and
chromatic information contained in P cell signals. From
section 3.2, we have seen that luminance and colour infor-
mation are contained in different local principal compo-
nents of the retinal image, after filtering by P cells. Thus
demultiplexing can be achieved by finding the local princi-
pal components. In section 4.1, we introduced a simple
modification of Hebbian learning that can find many prin-
cipal components of its inputs. In this section, we shall
apply the algorithm to simulated P cell signals.

As previously, the retina was a ID structure, aligned
with the scan-lines of a digitised RGB image. The L and M
cone catches were computed as in section 3.2, except that
this time the retina was 64 pixels long. The P cell receptive
field had a centre σ of 0.7 pixels, though other widths were
also tried with similar results. The neural network consisted
of 64 neurons. Each was assigned a retinal position. The
weight vector si of the i-th neuron was nonzero only within
a small interval (9 pixels) around the neuron’s retinal
position. These synaptic weights were applied to simulated
P cell responses from the retina to compute the neuron’s

response. The feedback term fi for each neuron was com-
puted from the local mean response of the network. The
local mean response was computed by low-pass filtering the
response array {n1,n2,n3, ... n64) by a gaussian filter. Letting
mi be the local mean at position i, the value of fi was set to

fi = µ1mi + µ2(mi-4 + mi+4)

and µ1 is the regression coefficient <nimi> / <mi
2>, and µ2

similarly. This choice of fi was motivated by three consid-
erations. First, the response of the neuron ni should be
different from the responses of neurons close to it, hence fi

should contain a term due to mi. Second, as a local represen-
tation of the image, the neuron response should be different
from flanking neurons, hence fi should contain a term due to
mi-x for some x. Finally, since we do not expect the near and
far local means, mi and (mi-4 + mi+4), to be statistically
related, each should have its own modifiable feedback
synapse. A diagram of this network is shown in Figure 4.

Figure 4. Diagram of the network. Each cell in the P cell layer
“cortical” layer accepts inputs from 9 adjacent P cells. Interneu-
rons average the responses of cortical units to compute the local
mean response. These are used to feedback on each of the units in
the network.

The network was run for 20000 iterations with β = 2 and
a learning rate λ = 1.0. Afterwards, we examined the
receptive fields developed by neurons in the network.
Because of edge-effects at either end of the 64 pixel retina,
only neurons in the centre 32 positions were looked at. The
units could be categorised by inspection as luminance or
chromatic sensitive. However, the segregation of the neu-
rons into these two categories is more clearly displayed
using a quantitative analysis. Each of the neural weight
vectors s is a set of weights which are applied to P cell inputs
coming from particular points on the retina. If the receptive
field weight is predictable on the basis of the centre cone
type (L or M) of the P cell at that point, the cell is probably
colour sensitive. If the weight is not predictable on this
basis, the cell is probably luminance sensitive. We com-
puted the correlation coefficient R2 between the receptive
field weights and the cones at the corresponding retinal
positions (using 0 to indicate an L cone, and 1 to indicate an
M cone). The distribution of R2 coefficients is shown in
Figure 5a. Clearly, the neurons segregate into two groups:
those with high values of R2 are chromatically sensitive,
while those with a low R2 are luminance sensitive. Ex-
amples of three receptive fields (comparable to the principal
components shown in figure 3) are shown in Figure 5,
together with their R2 values. Two of the receptive fields are
luminance sensitive, and respond to changes in the lumi-
nance of the image. The third is a chromatic cell, which
responds to a field of colour. These receptive fields are
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similar to those found by physiologists.6 Neural nets which
extract colour information from the P cell signal have been
demonstrated previously.17

5. Conclusion

We have shown that a simple unsupervised neural network
is capable of separating the signal from retinal P cells into
luminance and chromatic components. The neural network
implements a form of local principal components decompo-
sition of the P cell signal. It is, in one important respect,
superior to the LPC decomposition. The algorithm forces
each neuron to be (relatively) uncorrelated with its
neighbours. Under these circumstances, LPC components
which only have to be represented at a low sampling rate
will tend to be represented at a low rate in the network. Thus,
even though the chromatic principal component in the case
analysed in Figure 3 accounts for over 80% of the variance,
less than half the units in the network (Fig. 5) are chromatic
units. This is because the chromatic receptive field is
effectively a low-pass filter, so its sampling rate can be
correspondingly low.

The neural network approach also provides an interest-
ing perspective on the evolution of a colour pathway. If the
cortex is, indeed, a self-organising network, then the only
prerequisites for a colour channel are the existence of at least
some colour signal in the P cell inputs. If the P cells were
already selected to have small receptive fields (for say the

representation of fine detail in the retinal image) then they
would be pre-adapted to convey a colour signal. Then, the
only step needed to achieve colour vision is the mutation of
one cone photopigment into a different kind (for example,
the mutation of an L cone photopigment into an M-type).

There remain a number of deficiencies in the theory
presented here. First, the LPC theory has no obvious way of
controlling the sample rate of the components, nor of
choosing the size of the window, or of dealing with multiple
window sizes. All of these aspects are important, particu-
larly when dealing with natural images, which have a scale-
invariant statistical structure.18 Second, the neural network
theory does not provide us with a good way of choosing the
exact form of the feedback term fk to achieve any particular
representation. Instead, we are currently forced to select it
on various ad hoc grounds. Nevertheless, the algorithm is
still quite effective in its performance.
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